数据分析是指用适当的统计分析方法对收集到的大量数据进行分析,对其进行总结、理解和消化,以最大限度地发挥数据的功能,发挥数据的作用。数据分析是对数据进行详细研究和总结的过程,以提取有用的信息并形成结论。20世纪初建立了数据分析的数学基础,但直到计算机出现,才使实际操作成为可能,并推广了数据分析。数据分析是数学与计算机科学相结合的产物。下面就让小编为大家介绍分析能力的培养方法。
分析能力的培养方法
1、明确数据分析的目的
要分析一份数据,首先得先明确自己的目的:为什么要收集并分析这样一份数据?只有你的目的明确了之后,才能对接下来你要收集哪些数据、如何收集有一个整体的把握。当然你的目的可以是多个小点,(如:用户在首页浏览了哪些内容?登录框在页面上的重要程度?)只要这些点是一个个切实待解决的问题点,将其罗列下来,一个一个的去收集数据。你分析的结果可能会改变整个项目,但有了数据的支撑,会让项目或需求有一个全新的开始或细节的调整。
2、了解数据来源并收集
按照分析的目标中罗列的点,建立一个分析框架,并按照轻重缓急进行数据收集。与此同时,需要对数据是如何产生的,如何获取这些数据进行相应的了解。在工作中应用到的数据统计工具有:金牌令箭、显微镜、CNZZ统计等,通过这些统计工具可以方便的进行数据的收集,同时交互设计师也要与前端保持沟通,了解数据统计的方法,适时添加统计的维度,请前端同学帮忙埋统计代码。
3、掌握数据分析的方法
作为交互设计师,要掌握几种基本的数据分析方法:对比分析法、分组分析法、结构分析法、平均分析法、交叉分析法……基于这些分析方法,我们可以对现状、原因、未来有初步的了解,并进入后续更深入的分析。如:现状分析适用于对现今站点或页面的浏览点击情况做一个数据统计与热点分析,可以得出用户的浏览路径及关注重点。原因分析则侧重于一个问题,深入挖掘答案。未来分析可用于与产品经理沟通时,对后期产品的规划进行数据交流。
4、沟通分析结果
在沟通分析结果前,要注意不要只用手上仅有的资讯作判断,如果手上的证据不足以完全反应实际状况的时候,以数据分析结果作为决策就很容易出错,尤其是单看某一个数据维度时。交互设计师要超前思考,考虑产品经理可能从中提出的问题,并给出回应。让沟通高效且有意义。
5、数据不是万能的
前期数据可以用来挖掘用户需求,中期数据可以用来过滤产品功能,后期数据可以用来反映产品成败。整个过程当中,数据还能举证,作为产品经理与交互设计师之间的沟通内容。但是,我们要认清一个事实:数据不是万能的。它不能反映一切问题:在前期的分析中不一定能找到创新的突破口或者潜在的需求点;在后期的效果验证中,往往又会显得很有说服力。我们要怀着客观的心态来关注数据,从不同的角度出发,与产品经理之间保持有效的沟通。
了解管理。一是需要建立数据分析框架,如确定分析思路,需要用到营销、管理等理论知识来指导,如果不熟悉管理理论,就难以建立数据分析的框架,后续的数据分析工作也难以进行。另一种角色是对数据分析的结论提供有指导意义的分析建议。以上就是小编为大家分享的分析能力的培养方法。
[免责声明]
文章标题: 分析能力的培养方法
文章内容为网站编辑整理发布,仅供学习与参考,不代表本网站赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请及时沟通。发送邮件至36dianping@36kr.com,我们会在3个工作日内处理。