大数据分析是指对大数据的分析。大数据可以概括为五个V,数据量大,速度快,类型多(Variety),价值(Value),真实性(Veracity)。大数据作为IT行业最热门的词汇,其次是数据仓库、数据安全、数据分析、数据挖掘等。随着大数据时代的到来,大数据分析应运而生。下面就让小编为大家介绍大数据分析的三大方法。
大数据分析的三大方法
1. 数据服务
数据服务针对用户非常明确的数据查询和处理任务,以高性能和高吞吐量的方式实现大众化的服务,是数据价值最重要也是最直接的发现方式。由于要处理大众化的服务请求,每个服务任务必须能够被快速地处理掉,因此,数据服务的单个任务负载不能过于复杂,单任务直接处理的数据不能太大,任务对应的用户需求和采用的数据处理方法必须是明确的。一些典型的数据服务包括事务处理、数据查询、信息检索、数据预测。
2. 数据分析
数据分析是指用适当的统计分析方法对大量数据进行分析或建模,提取有用信息并形成结论,进而辅助人们决策的过程。在这个过程中,用户会有一个明确的目标,通过“数据清理、转换、建模、统计”等一系列复杂的操作,获得对数据的洞察,从而协助用户进行决策。常见的数据分析任务又可以被进一步划分为描述型分析、诊断型分析、预测型分析、策略型分析。
3. 数据探索
数据探索是指针对目标可变、持续、多角度的搜索或分析任务,其搜索过程是有选择、有策略和反复进行的。它将以找到信息为目的的传统信息检索模式变为以发现、学习和决策为目的的信息搜寻模式。这样的搜索模式结合了大量的数据分析与人机交互过程,适合于人们从数据中发现和学习更多的内容和价值。
当你在工作中遇到成千上万甚至成千上万的数据时,你不仅需要花费大量的时间和精力对它们进行分类和归纳,还需要在分类和归纳的数据中找出数据与数据之间的内在关系,无论是变量与变量之间的关系,还是变量与定量之间的关系。这种关系的搜索需要数据分析的帮助。以上就是小编为大家分享的大数据分析的三大方法。
[免责声明]
文章标题: 大数据分析的三大方法
文章内容为网站编辑整理发布,仅供学习与参考,不代表本网站赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请及时沟通。发送邮件至36dianping@36kr.com,我们会在3个工作日内处理。