热门文章> 迁移学习可以如何应用 >

迁移学习可以如何应用

36氪企服点评小编
2021-09-02 13:15
357次阅读

    毫无疑问,机器学习在工业中的应用和成功主要是由监督学习驱动的。在深度学习、更强大的计算资源和大量标签数据集的推动下,监督学习是人们对人工智能兴趣复苏、多轮融资和收购的主要原因,尤其是近年来我们看到的机器学习的应用,已经成为我们生活的一部分。下面就由小编为您介绍迁移学习可以如何应用。

迁移学习可以如何应用迁移学习可以如何应用

迁移学习的应用

从模拟中学习

      一个非常令我兴奋并且我认为我们在将来会见到更多的迁移学习应用就是从模拟中学习。对很多依靠硬件来交互的机器学习应用而言,在现实世界中收集数据、训练模型,要么很昂贵,要么很耗时间,要么只是太危险。所以最好能以某些风险较小的其他方式来收集数据。

     模拟是针对这个问题的首选工具,在现实世界中它被用来实现很多先进的机器学习系统。从模拟中学习并将学到的知识应用在现实世界,因为源域和目标域的特征空间是一样的(仅仅依靠像素),但是模拟和现实世界的边际概率分布是不一样的,即模拟和目标域中的物体看上去是不同的,尽管随着模拟的逐渐逼真,这种差距会消失。同时,模拟和现实世界的条件概率分布可能是不一样的,因为模拟不会完全复制现实世界中的所有反应,例如,一个物理引擎不会完全模仿现实世界中物体的交互。

     从模拟中学习有利于让数据收集变得更加容易,因为物体可以容易地被限制和分析,同时实现快速训练,因为学习可以在多个实例之间并行进行。因此,这是需要与现实世界进行交互的大规模机器学习项目的先决条件,例如自动驾驶汽车。谷歌无人车的技术主管 Zhaoyin Jia 说,「如果你真的想做无人驾驶车,模拟是必需的」。Udacity 已经开源了它用来进行无人驾驶汽车工程纳米学位教学的模拟器,OpenAI 的 Universe 平台将可能允许用《侠盗飞车 5(GTA 5)》或者其他视频游戏来训练无人驾驶汽车。

      另一个必需从模拟中学习的领域是机器人:在实际的机器人上训练模型是非常缓慢和昂贵的。从模拟中学习并且将知识迁移到现实世界的机器人上的方式能缓解这个问题,并且这种方面最近正得到越来越多的关注 [8]。图 8 中可以看到一个在现实世界和模拟中操作数据的一个例子。

      最后,另一个方向是通向通用人工智能的途径,其中模拟会是一个必需的组成部分。在现实世界中直接训练一个代理来实现通用人工智能的代价太高,并且不必要的复杂度还会在初始的时候阻碍训练。相反,如果基于诸如 CommAI-env [9] 的模拟环境的话,学习也许会更加成功。以上就是小编为您介绍的迁移学习可以如何应用。

[免责声明]

文章标题: 迁移学习可以如何应用

文章内容为网站编辑整理发布,仅供学习与参考,不代表本网站赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请及时沟通。发送邮件至36dianping@36kr.com,我们会在3个工作日内处理。

消息通知
咨询入驻
商务合作