热门文章> 完整的BI商业智能分析系统部署流程 >

完整的BI商业智能分析系统部署流程

36氪企服点评小编
2021-08-26 17:17
595次阅读

       目前正是数据可视化分析系统的黄金时代,国内出现了一批大数据分析厂商,但是,在部署Bi商业智能分析系统时,每一个bi分析系统的部署都要根据其所在企业的具体情况来定,使业务人员能够充分利用这些工具,实现数据决策的最终目标。下面就让小编来给大家分享一下完整的BI商业智能分析系统部署流程,让我们一起来看看吧。

完整的BI商业智能分析系统部署流程完整的BI商业智能分析系统部署流程

       很多未接触过的企业会认为商业智能系统只是买个技术买个软件而已。其实不然,作为一个商业智能解决方案,从前期部署到后续维护,需要考虑各方面因素,比如数据系统后端架构,企业业务需求的适应,实施技术如何融入到内部工作流程等等。那么,企业到底该如何建设BI商业智能系统呢,我们通过亿信BI的部署流程来了解商业智能的应用之道。

分析需求

       BI商业智能系统项目首要解决的是各业务系统之间数据整合问题,搭建一个数据整合平台,为企业管理人员提供提供一个全局的视图,通过强大的数据查询和报表展示功能让决策者能够将数据转换为知识进而辅助决策,为企业未来的经营状况作出准确的预测。

需求分析

       是商业智能项目最重要的一步,需要详细了解项目背景、业务目标、业务需求、业务范围等内容,明确企业对商业智能的期望和需要分析哪些主题。

项目背景

       主要描述企业目前已有系统的现状,包括不同的历史时期,它的业务需求分别是什么。因为以往的这些独立的信息系统数据分散,业务之间无法共享信息,数据展示单一,数据存在不一致现象,导致企业领导层无法从全局的角度对业务进行综合分析。业务范围是对项目团队所有人员工作范围的界定和个层级人员之间的权限设置。

业务需求

       是描述客户对于系统实现的总体性要求,以什么以及多少维度进行分析。

功能需求

       可以包含各业务主题分析、关键性指标查询和监控、报表查询和数据挖掘等内容。

数据仓库 建模

       需求分析是基础,而后就要建立数据仓库模型。在系统设计和开发之前,一般业务人员和设计人员要共同参与概念模型的设计,业务人员和设计人员之间要达成一致的核心业务概念。在系统设计开发时,业务人员和系统设计人员共同参与逻辑模型的设计,最后开发人员以逻辑模型为基础进行物理模型设计。

数据抽取、清洗、转换、加载

       抽取主要负责将数据仓库需要的数据从各个业务系统中抽取出来。如果每个业务系统的数据情况各不相同,可能对每个数据源都需要建立独立的抽取流程。通过数据抽取程序,将数据从业务源系统中不断抽取出来,抽取周期可以设定为某个固定时间,也可以设定为某个时间间隔。

       清洗阶段是对业务源数据的清洗和确认,检查抽取的源数据质量是否达到数据仓库的规定标准。

       转换是对源系统的数据做最后一步的修改,包括对源数据的聚合以及各种计算,是整个过程的核心部分。

       加载是将数据加载到最后的目标表中,其复杂度没有转换高,一般采用批量装载的形式。建立商业智能分析报表

       商业智能分析表是BI商业智能系统建设的最终成功展现。这时企业的高层领导就可以从全局建立分析,以多个视角查看企业的运营情况,并且按照不同的方式去探查企业内部的核心数据,从而对公司未来经营状况进行科学地预测和判断。

       事实上,BI商业智能分析系统严格来说是一种商业智能解决方案,除了全面深入的系统建设之外,更需要企业管理者和业务人员科学的管理思想去操作和维护。因此需要人员不断提高数据分析技巧,及时了解行业动态,强强联手,为企业发展保驾护航。以上就是小编为大家分享的关于“完整的BI商业智能分析系统部署流程”的全部内容啦,希望能给大家带来帮助哦。

[免责声明]

文章标题: 完整的BI商业智能分析系统部署流程

文章内容为网站编辑整理发布,仅供学习与参考,不代表本网站赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请及时沟通。发送邮件至36dianping@36kr.com,我们会在3个工作日内处理。

相关文章
最新文章
查看更多
关注 36氪企服点评 公众号
打开微信扫一扫
为您推送企服点评最新内容
消息通知
咨询入驻
商务合作