1、EXCEL
Excel作为入门级的工具,是最基础也是最主要的数据分析工具。Excel具备多种强大功能,比如创建表单,数据透视表,VBA等,Excel的系统如此庞大,以至于没有任何一项分析工具可以超越它,确保了大家可以根据自己的需求分析数据。它能够满足绝大部分数据分析工作的需求,同时也提供相当友好的操作界面,对于具备基本统计学理论的用户来说是十分容易上手的,但处理的数据量较小。 SPSS
2、SPSS
SPSS是采用图形菜单驱动界面的统计软件,它最突出的特点就是操作界面极为友好,输出结果美观漂亮。用户只要掌握一定的Windows操作技能,精通统计分析原理,就可以使用该软件为特定的科研工作服务。SPSS采用类似EXCEL表格的方式输入与管理数据,数据接口较为通用,能方便地从其他数据库中读入数据。其统计过程包括了常用的、较为成熟的统计过程,完全可以满足非统计专业人士的工作需要。
3、SAS
SAS是全球最大的软件公司之一,是全球商业智能和分析软件与服务领袖。SAS由于其功能强大而且可以编程,很受高级用户的欢迎,也正是基于此,它是最难掌握的软件之一,多用于企业工作之中。你需要编写SAS程序来处理数据,进行分析。如果在一个程序中出现一个错误,找到并改正这个错误比较困难。
4、R
R是一门用于统计计算和作图的语言,它不单是一门语言,更是一个数据计算与分析的环境。其最主要的特点是免费、开源、各种各样的模块十分齐全,在R的综合档案网络CRAN中,提供了大量的第三方功能包,其内容涵盖了从统计计算到机器学习,从金融分析到生物信息,从社会网络分析到自然语言处理,从各种数据库各种语言接口到高性能计算模型,可以说无所不包,无所不容,这也是为什么R正在获得越来越多各行各业的从业人员喜爱的一个重要原因。 Python
5、Python
Python是一种面向对象、解释型计算机程序设计语言。Python语法简洁而清晰,阅读一个良好的Python程序就感觉像是在读英语一样。Python在数据分析和交互、探索性计算以及数据可视化等方面都显得比较活跃。Python也具有强大的编程能力,这种编程语言不同于R或者matlab,python有些非常强大的数据分析能力,并且还可以利用Python进行爬虫,写游戏,以及自动化运维,在这些领域中有着很广泛的应用,这些优点就使得一种技术去解决所有的业务服务问题,这就充分的体现的Python有利于各个业务之间的融合。如果使用Python,能够大大地提高数据分析的效率。
6、SQL
毫不夸张地说,SQL是数据方向所有岗位的必备技能,入门比较容易,概括起来就是增删改查。SQL需要掌握的知识点主要包括数据的定义语言、数据的操纵语言以及数据的控制语言;在数据的操纵语言中,理解SQL的执行顺序和语法顺序,熟练掌握SQL中的重要函数,理解SQL中各种join的异同。总而言之,要想入行数据分析,SQL是必要技能。
7、BI工具
商业智能BI是为数据分析而生的,它诞生的起点很高。其目的是缩短从商业数据到商业决策的时间,并利用数据来影响决策。BI工具都是按照数据分析流程设计的。先是数据处理,数据清洗,然后是数据建模,最后是数据可视化,用图表来识别问题并影响决策。 以亿信ABI为例,其融合了ETL数据处理、数据建模、数据可视化、数据分析、数据填报、移动应用等核心功能。可以通过表单填报、表格填报实现数据的采集与补录,可预先对数据源进行整合及处理,通过简单的拖拽即可生成各式各样的可视化图表。
[免责声明]
文章标题: 数据分析工具有哪些
文章内容为网站编辑整理发布,仅供学习与参考,不代表本网站赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请及时沟通。发送邮件至36dianping@36kr.com,我们会在3个工作日内处理。