热门文章> 人工智能发展领域有哪些 >

人工智能发展领域有哪些

36氪企服点评小编
2022-03-14 18:52
605次阅读
人工智能的发展领域有:1、强化学习;2、生成模型;3、记忆网络;4、微数据学习微模型;5、学习/推理硬件;6、仿真环境;7、人工智能技术进入大规模商用阶段;8、智慧服务。1、强化学习:强化学习是一种通过实验和错误来学习的方法,它受人类学习新技能的过程启发。在典型的强化学习案例中,代理者通过观察当前所处的状态,进而采取行动使得长期奖励的结果最大化。

人工智能发展领域有哪些人工智能发展领域有哪些

企服解答

人工智能的发展领域有:1、强化学习;2、生成模型;3、记忆网络;4、微数据学习微模型;5、学习/推理硬件;6、仿真环境;7、人工智能技术进入大规模商用阶段;8、智慧服务。

1、强化学习

强化学习是一种通过实验和错误来学习的方法,它受人类学习新技能的过程启发。在典型的强化学习案例中,代理者通过观察当前所处的状态,进而采取行动使得长期奖励的结果最大化。每执行一次动作,代理者都会收到来自环境的反馈信息,因此它能判断这次动作带来的效果是积极的还是消极的。在这个过程中,代理者需要平衡根据经验寻找最佳策略和探索新策略两方面,以期实现最终的目标。

2、生成模型

不同于用来完成分类和回归任务的判别模型,生成模型从训练样本中学到一个概率分布。通过从高维的分布中采样,生成模型输出与训练样本类似的新样本。这也意味着,若生成模型的训练数据是脸部的图像集,那么训练后得到的模型也能输出类似于脸的合成图片。细节内容可以参考Ian Goodfellow的文章。他提出的生成对抗模型(GAN)的结构当下在学术界非常的火热,因为它给无监督学**提供了一种新思路。GAN结构用到了两个神经网络:一个是生成器,它负责将随机输入的噪声数据合成为新的内容(比如合成图片),另一个是判别器,负责学**真实的图片并判断生成器生成的内容是否以假乱真。对抗训练可以被认为是一类游戏,生成器必须反复学**用随机噪音数据合成有意义的内容,直到判别器无法区分合成内容的真伪。这套框架正在被扩展应用到许多数据模式和任务中。

3、记忆网络

为了让人工智能系统像人类一样能够适应各式各样的环境,它们必须持续不断地掌握新技能,并且记住如何在未来的场景中应用这些技能。传统的神经网络很难掌握一系列的学**任务。这项缺点被科学家们称作是灾难性遗忘。其中的难点在于当一个神经网络针对A任务完成训练之后,若是再训练它解决B任务,则网络模型的权重值不再适用于任务A。

4、微数据学习微模型

一直以来深度学习模型都是需要堆积大量的训练数据才能达到最佳的效果。比如,某只参加ImageNet挑战赛的团队使用了120万张分布于1000个类别的人工标注图像训练模型。离开大规模的训练数据,深度学习模型就不会收敛到最优值,也无法在语音识别、机器翻译等复杂的任务上取得好效果。数据量需求的增长往往发生在用单个神经网络模型处理端到端的情况下,比如输入原始的语音片段,要求输出转换后的文字内容。这个过程与多个网络协同工作各处理一步中间结果不同(比如,原始语音输入→音素→词→文本输出)。如果我们想用人工智能系统解决训练数据稀缺的任务时,希望模型训练用到的样本越少越好。当训练数据集较小时,过拟合、异常值干扰、训练集和测试集分布不一致等问题都会接踵而至。另一种方法是将在其它任务上训练好的模型迁移到新的任务中,这种方法被称为是迁移学习。

5、学习/推理硬件

促进人工智能发展的催化剂之一就是图形处理器(GPU)的升级,不同于CPU的顺序执行模式,GPU支持大规模的并行架构,可以同时处理多个任务。鉴于神经网络必须用大规模(且高维度)数据集训练,GPU的效率远高于CPU。这就是为什么自从2012年第一个GPU训练的神经网络模型——AlexNet公布之后,GPU已经成为名副其实的淘金铁锹。NVIDIA在2017年继续领跑行业,领先于Intel、Qualcomm、AMD和后起之秀Google

6、仿真环境

正如之前提到,为人工智能系统准备训练数据很具有挑战性。而且,若要将人工智能系统应用到实际生活中,它必须具有适用性。因此,开发数字环境来模拟真实的物理世界和行为将为我们提供测试人工智能系统适应性的机会。这些环境给人工智能系统呈现原始像素,然后根据设定的目标而采取某些行动。在这些模拟环境中的训练可以帮助我们了解人工智能系统的学习原理,如何改进系统,也为我们提供了可以应用于真实环境的模型。

7、人工智能技术进入大规模商用阶段

中国通信巨头华为已经发布了自主研发的人工智能芯片并将其应用在旗下智能手机产品中,苹果公司推出的iPhone X也采用了人工智能技术实现面部识别等功能。三星最新发布的语音助手Bixby则从软件层面对长期以来停留于“你问我答”模式的语音助手做出升级。人工智能借由智能手机已经与人们的生活越来越近。

8、智慧服务

过去几年我们看到俄罗斯的人工智能机器人尤金首次通过了著名的图灵测试,又见证了谷歌的AlphaGo和Master接连战胜人类围棋冠军,尽管这些史无前例的事件隐约让我们知道人工智能技术已经发展到了一个很高的水平,但因为太过浓厚的“炫技”色彩也让公众对人工智能技术产生很多质疑。

事实上大多数人在谈到人工智能时,首先想到的问题便是:“它究竟能够做什么?”“它到底能够用在什么地方?”“它能够给人类解决哪些问题?”在人工智能技术的应用方面,中国的互联网企业似乎表现地更加实用主义一些。将主要精力投向人工智能领域的百度几乎把人工智能技术应用到了旗下所有产品和服务中,雄心勃勃展开NASA计划的阿里巴巴也致力于将技术推向“普惠”。

[免责声明]

文章标题: 人工智能发展领域有哪些

文章内容为网站编辑整理发布,仅供学习与参考,不代表本网站赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请及时沟通。发送邮件至36dianping@36kr.com,我们会在3个工作日内处理。

消息通知
咨询入驻
商务合作