热门文章> 常见的数据分析法有哪些 >

常见的数据分析法有哪些

36氪企服点评小编
2022-01-11 17:36
622次阅读

       数据也叫做观测,是实验、测量、观察、调查等的结果。在资料分析中,处理的数据有定性和定量两种。只对一类数据进行分类,而不能用数字度量的数据叫做定性数据。下面就让小编来给大家分享一下常见的数据分析法有哪些,让我们一起来看看吧。 

常见的数据分析法有哪些常见的数据分析法有哪些

常见的数据分析法

1、聚类分析(Cluster Analysis)

       聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。聚类分析是一种探索性的分析,在分类的过程中,人们不必事先给出一个分类的标准,聚类分析能够从样本数据出发,自动进行分类。聚类分析所使用方法的不同,常常会得到不同的结论。不同研究者对于同一组数据进行聚类分析,所得到的聚类数未必一致。

2、因子分析(Factor Analysis)

       因子分析是指研究从变量群中提取共性因子的统计技术。因子分析就是从大量的数据中寻找内在的联系,减少决策的困难。因子分析的方法约有10多种,如重心法、影像分析法,最大似然解、最小平方法、阿尔发抽因法、拉奥典型抽因法等等。在社会学研究中,因子分析常采用以主成分分析为基础的反覆法。

3、相关分析(Correlation Analysis)

       相关分析(correlation analysis),相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度。相关关系是一种非确定性的关系,例如,以X和Y分别记一个人的身高和体重,或分别记每公顷施肥量与每公顷小麦产量,则X与Y显然有关系,而又没有确切到可由其中的一个去精确地决定另一个的程度,这就是相关关系。

4、对应分析(Correspondence Analysis)

       对应分析(Correspondence analysis)也称关联分析、R-Q型因子分析,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。

5、回归分析

       研究一个随机变量Y对另一个(X)或一组(X1,X2,„,Xk)变量的相依关系的统计分析方法。回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。

6、方差分析(ANOVA/Analysis of Variance)

       又称“变异数分析”或“F检验”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显著性检验。由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。方差分析是从观测变量的方差入手,研究诸多控制变量中哪些变量是对观测变量有显著影响的变量。

       实验数据的处理自然离不开绘制成表。那么,常见的实验数据处理表格体现方式分为两种:列表法和作图法。

       在数据中表现为类别,而非分次序,就是定性数据,如性别、品牌等;在定性数据上表示分类,但有次序,是按学历、商品质量等级等定性数据。以上就是小编为大家分享的关于“常见的数据分析法有哪些”的全部内容啦,希望能够给大家带来帮助哦。

[免责声明]

文章标题: 常见的数据分析法有哪些

文章内容为网站编辑整理发布,仅供学习与参考,不代表本网站赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请及时沟通。发送邮件至36dianping@36kr.com,我们会在3个工作日内处理。

消息通知
咨询入驻
商务合作