热门文章> 人脸识别系统主要包括四个组成部分 >

人脸识别系统主要包括四个组成部分

36氪企服点评小编
2022-01-13 14:08
1856次阅读

| 企服解答

人脸识别系统主要包括四个组成部分,分别为人脸图像采集及检测、人脸识别预处理、人脸图像特征提取以及匹配与识别。

人脸识别系统主要包括四个组成部分人脸识别系统主要包括四个组成部分

常用的人脸识别系统有哪些 点击查看

1、人脸图像采集及检测

图像中准确标定出人脸的位置和大小 , 人脸图像中包含的模式特征十分丰富,如直方图特征、颜色特征、模板特征、结构特征及哈尔特征等,人脸检测就是把这其中有用的信息挑出来,并利用这些特征实现人脸检测。

2、人脸图像预处理

基于人脸检测的结果,对图像进行处理,为后面的特征提取服务,系统获取的人脸图像可能受到各种条件的限制和随机干扰,需要进行缩放、旋转、拉伸、光线补偿、灰度变换、直方图均衡化、规范化、几何校正、过滤以及锐化等图像预处理。

3、人脸图像特征提取

就是将人脸图像信息数字化,将一张人脸图像转变为的一串数字(一般称为特征向量)。例如,对一张脸,找到它的眼睛左边、嘴唇右边、鼻子、下巴等位置,利用特征点间的欧氏距离、曲率和角度等提取出特征分量,最终把相关的特征连接成一个长的特征向量。

4、人脸图像匹配与识别

就是把提取的人脸图像的特征数据与数据库中存储的人脸特征模板进行搜索匹配,根据相似程度对身份信息进行判断,设定一个阀值,当相似度超过这一阀值,则把匹配得到的结果输出。这一过程又分为两类:一类是确认,是一对一进行图像比较,换句话说就是证明”你就是你“,一般用在金融的核实身份和信息安全领域;另一类是辨认,是一对多进行图像匹配,也就是说在N个人中找到你,一般的N可以是一个视频流,只要人走进识别范围就完成识别工作,一般用在安防领域。

| 拓展阅读

目前,人脸识别有1:1模式、1:N模式、M:N模式三种模式。

1、1:1模式

主要应用于一对一的身份识别场景,例如刷脸支付、酒店入住、考试身份核验、人证对比等。用户站在人脸识别终端前,过程中要站着不动几秒(静态识别),再通过人脸识别摄像头进行身份校验,以此证明“你是你”。由于如刷脸支付、酒店入住登记、考试身份核验、人证对比这些需要实名制的应用场景,搞错一个人都可能带来风险,一般要求识别准确度要达到99%以上,以保障身份精准对应。

2、1:N模式

主要应用于一对多的人脸识别场景,是从N张人脸中找出要找的人,以此找出“你是谁”。公司企业的刷脸考勤,同样是通过人脸识别设备,从公司内部的人脸数据库中自主查找,判定你是否公司员工,才能开门放行。又例如公安部门要从人流密集的地方找出记录在数据库的逃犯,需要通过从人脸数据库的大量信息中筛选出匹配的人。这类模式比较考验人像数据库的容量大小,准确率会比1:1模式要稍低5%-10%。

3、M:N模式

这里M可以理解为一个数据库。M:N模式多应用在一些人流量大、需要保障公共安全的地方。如火车站、演唱会、大型体育赛事中,进行这类人脸识别时,通常被识别的主体不会停留在一处,而且处于运动状态(如火车高铁站行色匆匆的旅客),属于动态识别,容易受侧脸、光线、距离等影响准确度,准确度是三种模式中最低。面对数据量大的人脸识别场景,可能还需要经过人脸识别终端进行边缘计算,减轻数据库后台的负担。

[免责声明]

文章标题: 人脸识别系统主要包括四个组成部分

文章内容为网站编辑整理发布,仅供学习与参考,不代表本网站赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请及时沟通。发送邮件至36dianping@36kr.com,我们会在3个工作日内处理。

相关文章
最新文章
查看更多
关注 36氪企服点评 公众号
打开微信扫一扫
为您推送企服点评最新内容
消息通知
咨询入驻
商务合作